MR Elastography of Liver

Sudhakar K. Venkatesh, MD, FRCR

Professor of Radiology
Mayo Clinic College of Medicine
Consultant, Abdominal Division
Radiology, Mayo Clinic
Rochester, MN, USA

19th May 2018
Disclosure

No financial interest to declare
Outline

• MR Elastography
• Principle & Technique of MRE of Liver
• Clinical applications of MRE
• MRE in PBC - Mayo experience
Magnetic Resonance Elastography (MRE)

- MRI + Elastography

Elastography - method for direct imaging of mechanical (viscoelastic) property of tissues

MRE - provides quantifiable parameters for measuring mechanical property of tissue

Tissue elasticity (stiffness)
Tissue Elasticity
Clinical application of elasticity
Chronic Liver Disease

Normal → Fibrosis → Cirrhosis

Tissue Stiffness
Shear waves to assess stiffness

Hard

Soft
MRE of Liver: Principle

Propagation of Shear waves

Conventional MR Image

MRE sequence

Displacement (µm) Shear stiffness (kPa)

Wave image → Elastogram

Inversion
Preparing for liver MRE

- Suitable for MRI
 - No contraindications
 - No devices susceptible to magnetic field
- Fit in the MRI scanner (60-70cm bore)
- Fasting 4 - 6 hours
 - Post prandial increase in stiffness
 - No high sugar drink/soda/pop during fasting
 - Same prep during follow up
MRE of Liver: Set up

MRE
Vibration Source

MRE
Abdominal Driver
Conventional MRI exam of Abdomen:
~ 30 - 45 min

MR Elastography:
adds ~ 5 min
Clinical Applications of MRE

• Detection and staging of liver fibrosis
• Assess response to treatment
• Prediction of decompensation
Staging of Liver Fibrosis

Stage 1: 2.1 kPa
Stage 2: 3.1 kPa
Stage 3: 4.8 kPa
Stage 4: 10.8 kPa
Liver Shear Stiffness (kPa)

* Based on clinical experience, histological correlation, and feedback from Gastroenterologists and Hepatologists

MRE of Liver Experience

<table>
<thead>
<tr>
<th>Reference</th>
<th>≥ F1</th>
<th>≥ F2</th>
<th>≥ F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rouviere et al 2006</td>
<td>1.00</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yin M et al 2007</td>
<td>0.98</td>
<td>0.86</td>
<td>0.92</td>
<td>0.91</td>
</tr>
<tr>
<td>Huwart et al 2008</td>
<td>0.96</td>
<td>0.99</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>Asbach et al 2008</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huwart et al 2008</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Wang et al 2011</td>
<td>0.92</td>
<td>0.98</td>
<td>0.99</td>
<td>0.95</td>
</tr>
<tr>
<td>Kim et al 2011</td>
<td>0.90</td>
<td>0.94</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Ichikawa et al 2012</td>
<td>0.98</td>
<td>0.98</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>Venkatesh et al 2014</td>
<td>0.99</td>
<td>0.97</td>
<td>0.94</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Diagnostic Performance of Magnetic Resonance Elastography in Staging Liver Fibrosis: A Systematic Review and Meta-analysis of Individual Participant Data

Siddharth Singh,* Sudhakar K. Venkatesh,† Zhen Wang,§ Frank H. Miller,‖ Utaroh Motosugi,¶ Russell N. Low,# Tarek Hassanein,** Patrick Asbach,†† Edmund M. Godfrey, §§ Meng Yin,‡ Jun Chen,¶ Andrew P. Keaveny,¶¶ Mellena Bridges,¶¶¶ Anneloes Bohte,## Mohammad Hassan Murad,§ David J. Lomas, §§ Jayant A. Talwalkar,* and Richard L. Ehman‡

12 studies, 697 patients

Etiology: HBV (11.6%), HCV (47.1%), NAFLD (16.5%), alcoholic liver disease (3.0%), autoimmune hepatitis (4.6%), cholestatic liver diseases (5.9%), and miscellaneous (11.3%)

RESULTS: We analyzed data from 12 retrospective studies, comprising 697 patients (mean age, 55 ± 13 y; 59.4% male; mean BMI, 26.9 ± 6.7 kg/m²; 92.1% with <1 year interval between MRE and biopsy; and 47.1% with hepatitis C). Overall, 19.5%, 19.4%, 15.5%, 15.9%, and 29.7% patients had stage 0, 1, 2, 3, and 4 fibrosis, respectively. The mean area under the receiver-operating curve values (and 95% confidence intervals) for the diagnosis of any (≥stage 1), significant (≥stage 2), advanced fibrosis (≥stage 3), and cirrhosis, were as follows: 0.84 (0.76–0.92), 0.88 (0.84–0.91), 0.93 (0.90–0.95), and 0.92 (0.90–0.94), respectively. A similar diagnostic performance was observed in stratified analysis based on sex, obesity, and etiology of CLD. The overall rate of failure of MRE was 4.3%.
The hazard of hepatic decompensation was **4.96 (95% CI 1.4-17.0, p=0.019)** for a subject with compensated disease and mean LSS value ≥ 5.8 kPa as compared to an individual with compensated disease and lower mean LSS values.
MRE vs. Other Methods

• MRE is proven to superior to
 • Liver function tests
 • Fibroscan
 • Morphological features
 • DWI
 • IVIM
 • Gadoxetate (Eovist) enhanced scans
 • MR Spectroscopy

MRE vs. Liver Function Tests

MRE versus AAR, APRI, PI, ALT and AST values

63 patients with chronic hepatitis B

Fibrosis

Significant Fibrosis

Venkatesh SK et al. European Radiology 2014;24(1):70-8
MRE vs. VCTE (Fibroscan)

Entire liver possible

<table>
<thead>
<tr>
<th>Reference</th>
<th>≥F1 TE</th>
<th>≥F1 MRE</th>
<th>≥F2 TE</th>
<th>≥F2 MRE</th>
<th>≥F3 TE</th>
<th>≥F3 MRE</th>
<th>F4 TE</th>
<th>F4 MRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huwart, 2008</td>
<td>0.80</td>
<td>0.96</td>
<td>0.84</td>
<td>0.99</td>
<td>0.91</td>
<td>0.98</td>
<td>0.93</td>
<td>0.99</td>
</tr>
<tr>
<td>Bohte, 2014</td>
<td>0.91</td>
<td>0.91</td>
<td>0.89</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ichikawa, 2014</td>
<td>0.87</td>
<td>0.97</td>
<td>0.87</td>
<td>0.98</td>
<td>0.96</td>
<td>0.98</td>
<td>0.93</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Elastography Meta analysis studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Technique</th>
<th>≥F1</th>
<th>≥F2</th>
<th>≥F3</th>
<th>F4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friedrich-Rust</td>
<td>Fibroscan (TE)</td>
<td>0.84</td>
<td>0.89</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Guo et al.</td>
<td>ARFI</td>
<td>0.82</td>
<td>0.85</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>MRE</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>Guo et al.</td>
<td>MRE</td>
<td>0.94</td>
<td>0.97</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Singh et al*</td>
<td>MRE</td>
<td>0.84</td>
<td>0.88</td>
<td>0.93</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Excludes normal controls
Comparison of techniques

Liver Biopsy
- <1 mm x 10-25 mm
- 1/50,000 of Liver

Fibroscan
- 10 mm x 40 mm
- 1/500 of Liver

MR Elastography
- Potentially whole Liver
Performance of MR Elastography in Difficult Situations

- **Obesity**
 - BMI = 36

- **Ascites**

Shear Stiffness (kPa)

Scale: 0 to 20
Limitations of MRE

- Poor Breath hold
- Waves not visible
- Iron overload
- Not valid
Iron Overload

2D GRE MRE

New Spin Echo EPI MRE
Determinants of Liver Stiffness

- Fibrosis
- Inflammation
- Acute biliary obstruction
- Portal pressure
- Venous congestion
- Infiltrative processes

Always consider clinical setting and data when interpreting MRE
MRE in PBC

• Clinical experience at Mayo Clinic

• Other elastography methods
 • Floreani A et al Dig Liver Dis 2011
 • Coprechot C et al. Hepatology 2012
 • VCTE useful in PBC
 • Over 5 year period
 • Liver stiffness is stable in most non cirrhotics
 • Significantly increases in cirrhosis
 • Progression of cirrhosis → poor outcome
 • Zhang HC et al world J Gastroenterol 2016
 • ARFI is useful in evaluation of PBC
39/F with PBC

Liver biopsy - Stage 0-1 fibrosis

LSM 2.4kPa
75/F with PBC

Liver biopsy - Stage 1 fibrosis

MRE - Magnitude image

LSM 2.6kPa
54/M with PBC

Liver biopsy - Stage 2-3 fibrosis

LSM 4.3kPa
52/F with PBC

Liver biopsy: Stage 3-4 fibrosis

LSM 4.9kPa
73/F with PBC

LSM 10.8kPa
Follow up Assessment

73/F with PBC

No significant change in the mean stiffness
Follow up Assessment

70/M with PBC

2013

T2W

LSM 1.8kPa

2017

T2W

LSM 1.9kPa

Stable disease
Follow up Assessment

54/F with PBC

2014
T2W
Delayed

LSM 3.4kPa

2016
T2W
Delayed

LSM 5.3kPa

Worsening stiffness - Progression
Treatment Assessment

52/F with AMA negative PBC on Ursodiol and Prednisone

2010

LSM 3.5kPa

2015

LSM 2.6kPa

Improvement in the stiffness
Follow up Assessment

54/F PBC

MRE can detect fibrosis even in the absence of morphological changes in the liver.
Summary

• **MRE of Liver**
 • Robust, reliable and reproducible technique for evaluation of liver stiffness.
 • Most accurate test for detection of fibrosis
 • Clinical follow up for progression/regression
 • Assessment of therapeutic response

• **Role of MRE in PBC**
 • Likely useful in evaluation of fibrosis
 • Role in assessment of treatment is promising
Thank you

venkatesh.sudhakar@mayo.edu